China high quality Cheap High Precision Different Size Spur Gear Transmission Steel/Brass Worm Gear top gear

Product Description

Item:Cheap High Precision Different Size Spur Gear Transmission Steel/Brass Worm Gear

1. High degree of automation and high production efficiency;

2. Strong adaptability to CNC machining objects. When changing the processing object, in addition to replacing and solving the blank clamping mode, it only needs to be reprogrammed;

3. High machining precision and stable quality. The machining dimensional accuracy is between 0.005 ~ 0.01 mm, which is not affected by the complexity of parts;

Parameter :
 

Item Cheap High Precision Different Size Spur Gear Transmission Steel/Brass Worm Gear
Weight Customized
Dimension Customized
Material Aluminum alloy(6063 T5,6061,5052,7075,1060…),Stainless steel(316L,304,303…),Copper,Brass,Bronze,Carbon steel,PET,POM,Nylon…
Machined Technology 3,4,5 Axis CNC Machining,CNC Milling,CNC Turning,Laser Cutting,Die Casting,Cold forging,Aluminum Extrusion,Sheet Metal Fabrication,Stamping,Welding,Friction Stir Welding,Assembling.
Surface Treatment Anodizing,Painting,Powder Coating,electrophoresis,Passivation,Sand Blasting,Plating,Blackening,Polishing…
Tolerance ±0.01MM
Application Electronic products body ,Telecom Chasis,Cover,aerospace structure parts,heat sink,aluminum cooling plate,gear&shaft,bearing,high speed feed through,other OEM/ODM customized machining parts

Our advantage:

1. Experienced engineering team;

2. Full process QC inspection, complete quality system before, during and after processing;

3. Efficient and rapid response, benign interaction between business and production, and accurately grasp customer requirements;

Shipping Cost:

Estimated freight per unit.



To be negotiated
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

epicyclic gear

How does an epicyclic gear mechanism work in automatic transmissions?

An epicyclic gear mechanism, also known as a planetary gear system, plays a crucial role in the operation of automatic transmissions. Here’s a detailed explanation:

An automatic transmission utilizes a combination of different clutches, bands, and an epicyclic gear system to achieve gear ratios and control the transfer of power from the engine to the wheels. The epicyclic gear mechanism consists of the following components:

1. Sun Gear:

The sun gear is a central gear placed at the center of the mechanism. It receives power from the engine and is connected to the input shaft of the transmission.

2. Planet Gears:

Several planet gears are arranged around the sun gear and mesh with both the sun gear and the ring gear. The planet gears are mounted on a carrier, which allows them to rotate around the sun gear.

3. Ring Gear:

The ring gear is the outermost gear in the mechanism and has internal teeth that engage with the planet gears. The ring gear is connected to the output shaft, which transfers power to the wheels.

Here’s how the epicyclic gear mechanism works in an automatic transmission:

1. Neutral Position:

In the neutral position, no gears are engaged, and power flows freely through the transmission without any gear reduction or multiplication. The sun gear and the ring gear remain stationary.

2. Gear Engagement:

When a specific gear is selected, hydraulic clutches and bands are used to engage and disengage various elements of the epicyclic gear mechanism. The clutches and bands selectively hold and release specific gears to achieve the desired gear ratio.

3. Gear Ratios:

The gear ratio is determined by the arrangement and engagement of the gears in the epicyclic gear system. The sun gear, planet gears, and ring gear interact to produce different gear ratios. By selectively holding or releasing specific gears using clutches and bands, different gear ratios can be achieved, allowing the transmission to adapt to different driving conditions.

4. Power Flow:

The power flows through the different elements of the epicyclic gear mechanism based on the gear ratio selected. The input power from the engine is transmitted to the sun gear. Depending on the gear ratio, power is then transferred to the planet gears and the ring gear. The output shaft, connected to the ring gear, receives the power and transfers it to the wheels, propelling the vehicle.

5. Shifting Gears:

When shifting gears, the hydraulic control system of the transmission adjusts the engagement of the clutches and bands, causing the epicyclic gear mechanism to shift to a different gear ratio. This allows for seamless and automatic gear changes without the need for manual shifting.

Overall, the epicyclic gear mechanism in automatic transmissions enables the transmission to provide different gear ratios, control power flow, and facilitate smooth gear shifting. This mechanism plays a crucial role in the efficient and automatic operation of automatic transmissions in vehicles.

epicyclic gear

What is the purpose of using epicyclic gears in robotics and automation?

Epicyclic gears, also known as planetary gears, serve several purposes in robotics and automation. Here’s a detailed explanation:

1. Compact Size:

Epicyclic gears offer a compact and space-efficient solution for transmitting torque and achieving different speed ratios. The arrangement of multiple gears within a single gear system allows for a high gear reduction or speed increase in a relatively small package. This compact size is particularly advantageous in robotics and automation applications where space is limited.

2. High Torque Transmission:

Epicyclic gears are capable of transmitting high torque levels due to their design. The load is distributed among multiple planet gears, allowing for a higher torque capacity compared to other gear types. This high torque transmission capability makes epicyclic gears suitable for applications that require precise and powerful motion control, such as robot joints and industrial automation systems.

3. Speed Control:

The arrangement of gears in an epicyclic gear system allows for precise control over speed ratios. By manipulating the input and output gears, different gear ratios can be achieved, enabling speed control and gear reduction or amplification. This speed control capability is essential in robotics and automation to achieve desired motion profiles and optimize system performance.

4. Backlash Minimization:

Epicyclic gears can be designed to minimize backlash, which is the angular clearance between gear teeth when there is no load applied. Backlash can introduce inaccuracies and delays in robotic and automation systems. By carefully designing gear tooth profiles and controlling gear meshing, epicyclic gears can reduce backlash, improving precision and responsiveness in motion control applications.

5. Efficiency and Durability:

Epicyclic gears can achieve high efficiency levels due to their rolling contact between gear teeth. This rolling contact results in less friction and energy loss compared to sliding contact gears. Additionally, the load distribution among multiple gear teeth reduces the stress on individual teeth, enhancing durability and prolonging the gear system’s lifespan.

6. Modular Design:

Epicyclic gears offer a modular design that allows for easy integration into robotic and automation systems. They can be combined with other mechanical components, such as motors and actuators, to create compact and efficient power transmission systems. The modular nature of epicyclic gears simplifies system design, assembly, and maintenance.

7. Reduction of Motor Torque Ripple:

In certain robotic applications, particularly those requiring smooth and precise motion, epicyclic gears can be utilized to reduce motor torque ripple. By incorporating epicyclic gears with appropriate gear ratios, the torque ripple generated by the motor can be smoothed out, resulting in smoother and more uniform motion.

In summary, the purpose of using epicyclic gears in robotics and automation is to provide a compact size, high torque transmission, speed control, backlash minimization, efficiency and durability, modular design, and reduction of motor torque ripple. These advantages make epicyclic gears a valuable choice for achieving precise motion control, optimizing system performance, and enhancing the overall efficiency and reliability of robotic and automation systems.

epicyclic gear

What is an epicyclic gear and how does it function?

An epicyclic gear, also known as a planetary gear, is a gear system that consists of one or more outer gears, an inner gear, and a central gear, known as a sun gear. Here’s a detailed explanation of how it functions:

1. Gear Arrangement:

In an epicyclic gear system, the sun gear is located at the center and is surrounded by multiple outer gears, also called planet gears. The planet gears are typically mounted on a carrier, which allows them to rotate around the central sun gear.

2. Gear Engagement:

The teeth of the planet gears mesh with both the sun gear and an outer ring gear, also known as the annular gear. The annular gear has internal teeth that engage with the planet gears and external teeth that provide the outer boundary of the gear system.

3. Input and Output:

The input and output connections can be achieved in different ways depending on the design. Typically, the sun gear serves as the input shaft, while the carrier or the annular gear acts as the output shaft. The rotation of the input shaft (sun gear) causes the planet gears to orbit around it and rotate, resulting in the output shaft’s motion.

4. Gear Ratios:

An essential feature of epicyclic gears is their ability to provide different gear ratios by changing the arrangement of the gears. By holding one component stationary, such as fixing the annular gear or the carrier, and driving another component, the gear system can achieve various speed and torque combinations.

5. Gear Functions:

Epicyclic gears have several useful functions in mechanical systems, including:

  • Speed reduction: By fixing the sun gear and rotating the carrier or the annular gear, the output speed can be reduced compared to the input speed.
  • Speed increase: By fixing the carrier or the annular gear and rotating the sun gear, the output speed can be increased compared to the input speed.
  • Directional changes: Changing the gear engagement arrangement allows reversing the direction of rotation between the input and output shafts.
  • Torque multiplication: By utilizing the gear ratios, an epicyclic gear system can multiply or divide the torque between the input and output shafts, providing mechanical advantage.
  • Braking: By holding specific components, such as the sun gear or the carrier, the gear system can act as a brake, preventing rotation or controlling the speed of the output shaft.

Epicyclic gears find applications in various mechanical systems, including automotive transmissions, gearboxes, power tools, and robotics, due to their compact size, versatility, and ability to achieve multiple gear ratios within a single gear system.

China high quality Cheap High Precision Different Size Spur Gear Transmission Steel/Brass Worm Gear top gearChina high quality Cheap High Precision Different Size Spur Gear Transmission Steel/Brass Worm Gear top gear
editor by CX 2023-09-12